
专题:AI工具与框架
本专场将探讨AI工具和框架选型,重点关注企业如何在已有大数据平台的情况下引入人工智能平台,在这个过程中有哪些难点,如何让人工智能平台尽快发挥效力,成为企业的基础设施平台。

本专题下的议题
端上AI推理引擎的设计与边缘计算的结合
姜霄棠 淘宝 端智能团队
所属专题:AI工具与框架
课程概要
人工智能近年来快速爆发,特别是基于深度学习的算法在计算机视觉等领域取得了巨大进展,并且逐步在端侧应用。端上推理框架的功能与性能,决定了端侧AI应用是否可行。
MNN起初用于淘直播、短视频,后逐步在搜索推荐、商品图像搜索、互动营销、权益发放、安全风控等领域应用,在业务场景不断扩大的情况下,对MNN的功能和性能有着日益严格的要求。
对于传统的视觉领域,我们通过算法优化,汇编优化,异构编程,内存复用等技术,使MNN的性能处于同类框架的前列。针对边缘计算业务,我们采用图优化、非线性函数优化等技术,保证了边缘计算业务的顺利开展。
听众收益
1、 移动端上AI推理引擎的设计。
2、 移动端上主要的性能优化技术。
3、 边缘计算的主要业务场景和特定优化技术。
Watson Anywhere: Scale AI in multi-cloud and hybrid-cloud
Andrew Zhang IBM Analytics Architect
所属专题:AI工具与框架
课程概要
In this talk, we will review the latest development in IBM Machine Learning and AI platform in multi-cloud and hybrid-cloud environment.
1. IBM Watson Studio, Watson Machine Learning, and OpenScale
2. IBM Cloud Private, IBM Cloud Private for Data
3. Watson Anywhere: Scale ML and AI in enterprise and cross IBM Cloud, AWS, Azure, and GCP.
听众收益
Learn IBM latest AI and ML platform to scale in multi-cloud and hybrid cloud environment.
Bighead: Airbnb's Machine Learning Platform
Alfredo Luque Airbnb Software Engineer
所属专题:AI工具与框架
课程概要
Bighead is Airbnb’s approach to creating a platform that covers all aspects of using ML at a company. Starting with sophisticated feature engineering at scale to model development/prototyping and ending with deployment in a variety of environments. The audience will walk through the many challenges of designing a platform that’s both flexible and scales well along with the design decisions that Airbnb has taken to design infrastructure that can be used both internally and by the open source community. A variety of unique ML use cases will be covered as well.
听众收益
- Learn approaches to massive scale feature engineering, easy ML prototyping, and robust, scalable production ML
- See how Airbnb deals approaches a wide variety of ML problems
- Develop strategies for building a battle-hardened production ML system

专题:AI工具与框架
本专场将探讨AI工具和框架选型,重点关注企业如何在已有大数据平台的情况下引入人工智能平台,在这个过程中有哪些难点,如何让人工智能平台尽快发挥效力,成为企业的基础设施平台。
其他相关专题
-
机器学习
专题出品人:敬请期待
本专题将聚焦于机器学习技术在工业界的落地实践,包含:如何针对业务特点进行技术选型?如何从0到1构建机器学习平台?如何对平台进行持续迭代优化?实践过程中有可能要踩哪些坑,如何提前规避?
-
AI工具与框架
专题出品人:敬请期待
本专场将探讨AI工具和框架选型,重点关注企业如何在已有大数据平台的情况下引入人工智能平台,在这个过程中有哪些难点,如何让人工智能平台尽快发挥效力,成为企业的基础设施平台。
-
计算机视觉
专题出品人:鞠奇
腾讯 技术总监
随着机器视觉技术的迅速发展,计算机视觉技术的快速、精确、智能等特性在现代工业的各个领域已逐渐被广泛应用,包括人脸识别、图像识别、物体检测等技术,本专场将探讨计算机视觉在相关行业的最新应用和实践。
-
机器学习
专题出品人:敬请期待
本专题将聚焦于机器学习技术在工业界的落地实践,包含:如何针对业务特点进行技术选型?如何从0到1构建机器学习平台?如何对平台进行持续迭代优化?实践过程中有可能要踩哪些坑,如何提前规避?

